Design for X

Descrizione

Design for Assembly
Design for Assembly secondo approccio Boothroyd and Dewhurst per la riduzione del numero di componenti e del tempo di assemblaggio.
Conceptual Design for Assembly secondo approccio Stone & McAdams usato nelle fasi concettuali di progettazione per la riduzione dei costi di assembly e dei processi produttivi.

Design for Disassembly
Design for Disassembly secondo approccio della Matrice delle Precedenze e delle Sequenze di Smontaggio, per identificare operazioni critiche e percorsi critici di disassembly

Design for End of Life
Design for End of Life secondo approccio della Materials Selection per il rispetto delle normative (REACH, RoHS, etc.) e per aumentare la riciclabilità di prodotto.
 

Laboratori

Le attività di ricerca vengono svolte nel laboratorio di Virtual Prototyping.

Pubblicazioni
  1. Mandolini, M., Favi, C., Germani, M., & Marconi, M. (2018). Time-based disassembly method: how to assess the best disassembly sequence and time of target components in complex products. The International Journal of Advanced Manufacturing Technology, 95(1–4), 409–430. http://doi.org/10.1007/s00170-017-1201-5
  2. Favi, C., Marconi, M., Germani, M., & Mandolini, M. (2019). A design for disassembly tool oriented to mechatronic product de-manufacturing and recycling. Advanced Engineering Informatics, 39(November 2018), 62–79. http://doi.org/10.1016/j.aei.2018.11.008
  3. Favi, C., Germani, M., Luzi, A., Mandolini, M., & Marconi, M. (2017). A design for EoL approach and metrics to favour closed-loop scenarios for products. International Journal of Sustainable Engineering, 10(3), 136–146. http://doi.org/10.1080/19397038.2016.1270369
  4. Favi, C., Germani, M., Luzi, A., Mandolini, M., & Marconi, M. (2017). A design for EoL approach and metrics to favour closed-loop scenarios for products. International Journal of Sustainable Engineering, 10(3), 136–146. http://doi.org/10.1080/19397038.2016.1270369
  5. Peruzzini, M., Mandolini, M., & Raffaeli, R. (2016). A Design-to-sustainability Platform based on Functional Representations and Simplified Geometric Layouts. In CAD’16 (Vol. 14, pp. 301–312). Vancouver: CAD Solutions LLC. http://doi.org/10.14733/cadconfP.2016.60-64
  6. Marconi, M., Favi, C., Germani, M., Mandolini, M., & Mengarelli, M. (2017). A Collaborative End of Life platform to Favour the Reuse of Electronic Components. Procedia CIRP, 61, 166–171. http://doi.org/10.1016/j.procir.2016.11.169
  7. Favi, C., Germani, M., Mandolini, M., & Marconi, M. (2017). A Software Tool for the Analysis and Management of Resource Consumptions and Environmental Impacts of Manufacturing Plants. Procedia CIRP, 61, 341–346. http://doi.org/10.1016/j.procir.2016.11.166
  8. Favi, C., Germani, M., Mandolini, M., & Marconi, M. (2016). Includes Knowledge of Dismantling Centers in the Early Design Phase: A Knowledge-based Design for Disassembly Approach. In Procedia CIRP (Vol. 48, pp. 401–406). http://doi.org/10.1016/j.procir.2016.03.242
  9. Favi, C., Germani, M., & Mandolini, M. (2016). Design for Manufacturing and Assembly vs. Design to Cost: Toward a Multi-objective Approach for Decision-making Strategies During Conceptual Design of Complex Products. Procedia CIRP, 50, 275–280. http://doi.org/10.1016/j.procir.2016.04.190
  10. Favi, C., Germani, M., Mandolini, M., & Marconi, M. (2016). Disassembly Knowledge Classification and Potential Application: A Preliminary Analysis on a Washing Machine. In Volume 4: 21st Design for Manufacturing and the Life Cycle Conference; 10th International Conference on Micro- and Nanosystems (Vol. 4, p. V004T05A011). ASME. http://doi.org/10.1115/DETC2016-59514
Responsabile scientifico
Gruppo di lavoro